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In this citizen science project, we ask citizens to listen to relevant sections of
seismograms that are converted to audible frequencies. Citizen scientists helped
identify local seismic events whose recorded signals are much smaller than those
associated with the surface waves that have triggered these local events. The local
events include small earthquakes as well as tectonic tremor. While progress has been
made in understanding how these events might be triggered by surface waves from
large teleseismic earthquakes around the world, there is no consensus on its physical
mechanism. The aim of our project is to engage the help of citizen scientists to
increase general knowledge of triggered seismic events that may or may not occur
during transient strain changes, such as from propagating surface waves. A better
understanding of triggered seismic events is expected to provide important clues
toward a fundamental understanding of how earthquakes nucleate and the physical
mechanisms that connect different earthquakes and other slip events. From the
volunteers’ classifications we determined that citizen scientists achieve a higher reliability
in detecting earthquakes and noise than in detecting tremor or other signals and that
citizen scientists more accurately identify earthquake signals than a trained machine-
learning algorithm. For tremor classifications we currently depend entirely on humans as
no machine has yet learned to detect triggered tremor.

Keywords: earthquake detective, citizen sciences, triggered seismic events, machine-learning algorithm, audible
pitches, Alaska

INTRODUCTION

Surface waves generally have the longest duration and largest displacement of all seismic waves.
When they pass through a seismically active region, surface waves from distant earthquakes
may locally trigger an earthquake or tremor (Miyazawa and Mori, 2005; Gomberg et al.,
2008; Rubinstein et al., 2009; Chao et al., 2012; Ide, 2012). Determining the frequency and
conditions under which triggered seismic events occur will lead to a better understanding of
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the dynamic triggering of earthquakes (Peng and Gomberg, 2010;
Brodsky and van der Elst, 2014). Seismometers continuously
record ground motion at stations around the world, including
seismic waves of small events which may be detected at one or
at multiple instrument locations. Due to the large number of
seismometers, the available seismograms are too numerous to be
examined by seismologists (Liang et al., 2016). With Earthquake
Detective, we utilize the Zooniverse platform to engage citizen
scientists in an experiment to test if many human ears and
eyes can replace the process of a professional seismologist in
identifying dynamically triggered seismic events. We focus on
data from seismic stations in Alaska, including USArray stations
of EarthScope. Our approach has three advantages: (1) The
human ear naturally performs a time-frequency analysis and is
capable of discerning a wide range of different signals (Zwicker,
1961), (2) many human ears listening to the same data provides
statistics that rank seismograms in order of their likelihood
to contain a recording of a local event, which is helpful to

researchers’ analysis of this data (Kilb et al., 2012), and (3) part
of the citizen scientists’ responses can be compared to the results
of a machine-learning algorithm to assess their performance.

Different seismic events can be classified by citizen
scientists when listening to the audio data alongside the
visual graphs. When sufficient data is classified, seismologists
and data scientists can use it to train a machine-learning
algorithm (an example of artificial intelligence) to automate
the classification of seismograms (Xing et al., 2003; Perol
et al., 2018; Tang et al., 2020). From there, seismic models
for how, where, when, and why earthquakes happen may be
refined by seismologists. The work citizen scientists put into
this project contributes to the fundamental understanding
of our planet that will allow a more sustainable society
by allowing professionals to better assess hazards from
future seismic events. An electronic supplement provides
details on interface diagrams of the project and portions
of data utilized.

FIGURE 1 | Data processing. (A) Raw seismogram from MPM station following the February 27, 2010 Chile earthquake with Mw8.8. (B) Seismogram converted to
velocity by removing the instrument response. (C) Seismogram after applying a filter from 2 to 8 Hz. (D) Seismogram is cut for the surface-wave interval.
(E) Generating audio files by speeding up the time series and scaling the amplification.
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MATERIALS AND METHODS

Far-field surface waves of large magnitude earthquakes
can dynamically trigger seismic events such as small, local
earthquakes (Prejean et al., 2004) and tectonic tremor (Peng
and Gomberg, 2010). Here, we address results from the citizen
scientists’ classifications of data from USArray (TA) and the
Alaska Regional Network (AK), which were recorded in the
US from 2013 to 2018 (see section “Acknowledgments and
Data” for details). The seismic waveforms presented to citizen
scientists are downloaded from the IRIS (Incorporated Research
Institutions for Seismology) Data Management System (DMS)
(see section “Acknowledgments and Data”). The downloaded
waveforms (Figure 1A) have a start time of 60 minutes before
and an end time of 180 minutes after the origin times of
selected large earthquakes with moment magnitude (Mw)
greater than 7.5 (Table 1; Aiken and Peng, 2014; Chao and
Obara, 2016). Waveforms were converted to ground velocity
by deconvolving the instrument response from the recorded
waveforms, and rotated to radial, transverse and vertical
components (Figure 1B). The waveforms are then band-pass

TABLE 1 | Teleseismic earthquakes used in this study.

No. Date Longitude
(◦)

Latitude
(◦)

Depth
(km)

Magnitude
(Mw)

1. 2013-02-06T01:12:26 165.114 −10.799 24.0 8.0

2. 2013-04-16T10:44:19 61.996 28.033 80.0 7.7

3. 2013-11-17T09:04:56 −46.4011 −60.2738 10.0 7.7

4. 2014-04-01T23:46:47 −70.7691 −19.6097 25.0 8.2

5. 2014-04-03T02:43:14 −70.4931 −20.5709 22.4 7.7

6. 2014-04-12T20:14:38 162.1481 −11.2701 22.56 7.6

7. 2014-04-19T13:28:00 155.0241 −6.7547 43.37 7.5

8. 2014-06-23T20:53:09 178.7352 51.8486 109.0 7.9

9. 2015-03-29T23:48:31 152.5623 −4.7294 41.0 7.5

10. 2015-04-25T06:11:26 84.7314 28.2305 8.22 7.8

11. 2015-05-05T01:44:04 151.8751 −5.4624 55.0 7.5

12. 2015-05-30T11:23:02 140.4931 27.8386 664.0 7.8

13. 2015-09-16T22:54:32 −71.6744 −31.5729 22.44 8.3

14. 2015-10-26T09:09:42 70.3676 36.5244 231.0 7.5

15. 2016-03-02T12:49:48 94.3299 −4.9521 24.0 7.8

16. 2016-04-16T23:58:36 −79.9218 0.3819 20.59 7.8

17. 2016-07-29T21:18:26 145.5073 18.5429 196.0 7.7

18. 2016-11-13T11:02:59 173.054 −42.7373 15.11 7.8

19. 2016-12-08T17:38:46 161.3273 −10.6812 40.0 7.8

20. 2016-12-17T10:51:10 153.5216 −4.5049 94.54 7.9

21. 2016-12-25T14:22:27 −73.9413 −43.4064 38.0 7.6

22. 2017-01-22T04:30:22 155.1718 −6.2464 135.0 7.9

23. 2017-01-22T04:30:22 155.1718 −6.2464 135.0 7.9

24. 2017-07-17T23:34:13 168.857 54.4434 10.0 7.7

25. 2017-09-08T04:49:20 −93.8993 15.0222 47.39 8.2

26. 2018-01-10T02:51:31 −83.52 17.4825 19.0 7.5

27. 2018-08-19T00:19:40 −178.153 −18.1125 600.0 8.2

28. 2018-09-06T15:49:14 179.3502 −18.4743 670.81 7.9

29. 2018-09-28T10:02:43 119.8462 −0.2559 20.0 7.5

30. 2018-12-05T04:18:08 169.4266 −21.9496 10.0 7.5

filtered between 2 and 8 Hz (Figure 1C) to remove Rayleigh
waves from the radial and vertical components and Love
waves from the transverse component. After determining the
beginning of the surface-wave window for each station based
on its distance from the epicenter and using a group velocity
of 4.5 km/s, we selected the first 2000 s of the time series
after this start time (Figure 1D). We generated audio files by
speeding up the time series by a factor of 800 and applying
an arctangent function to the amplitudes for dynamic-range
compression (Figure 1E). This provides improved audibility
for signals with smaller amplitude while preventing events with
larger amplitude signals from excessive loudness. Waveforms
with either gaps in the time series, calibrations or re-centering
signals, or other glitches were discarded before presenting
the data to citizen scientists on the largest people-powered
research platform, “Zooniverse” (Supplementary Figures S1–
S3). With this platform, we were able to provide tutorial
and practice sessions for training our citizen scientists to
identify “earthquakes,” “tremor,” and “noise” signals. Citizen
scientists are asked to choose “none of the above” when the
seismic signals do not clearly fall in one of the other categories
or more than one different signal is present in the data
(Supplementary Figures S4, S5).

Seismic waves that are caused by the displacement of tectonic
plates along a fault are known as earthquake signals. They are
caused by the sudden release of seismic energy, making them
short in duration and resembling the sound of a slamming
door. Tremors have a longer duration and are generated by
a slow release of acoustic and seismic energy. Sped up to
audible frequencies, tremor can sound like a train darting over
railroad tracks.

The Earth is in constant motion under the influence of
forces from atmosphere, hydrosphere (e.g., ocean currents
and waves), and biosphere, including anthropogenic
activity, generated by traffic or industry, for example.
Therefore, every seismogram contains relatively steady
noise, even in the absence of seismic signals or distinct
noise events, which converts to a slowly varying, white
noise “baseline” for the sound file. These noise signals
sound like whistling wind, crinkling aluminum foil, or
radio static.

Earthquakes and tremors as well as natural and anthropogenic
sources generate seismic signals that may or may not exceed the
baseline noise level of a seismogram. These different sources can
be distinguished by the sound of their signals.

RESULTS

Of 2467 seismograms recorded by the AK network, 1103
seismograms were classified as earthquakes by citizen scientists,
141 as tremor, 770 as noise, and 228 were labeled as to
pertaining to none of these categories. The distribution of
classifications in the four categories (Figure 2) indicates
that earthquakes (74% of all classifications on seismograms
identified as earthquakes are made for this category)
and noise (66%) were identified with more certainty by
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FIGURE 2 | Histograms for each classified category. The four categories contain seismograms which have received a majority classification for one category and
show the average of the classifications made for the seismograms contained in this category.

citizen scientists than tremor (50%) and other, unclear
events (51%). Hence, citizen scientists were able to classify
earthquakes and noise more consistently than tremor
and other events.

For one Mw7.5 earthquake on December 5, 2018, seismologists
independently classified the seismograms for which 7 of
10 citizen scientists agreed, in order to assess the accuracy
of the project volunteers. For comparison, we applied a
machine-learning (ML) algorithm, trained to detect earthquake
signals only (Tang et al., 2020), and compared its output

with our expert labels as well. Assuming that the expert
labels are “true,” citizen scientists’ labels were 85% accurate in
classifying earthquakes and did not mislabel any seismogram
without earthquakes though 23% of all earthquakes remained
undetected by citizen scientists (Figure 3). Figure 4 shows
results from ML as projections into two-dimensional spaces via
the PCA (Principal Component Analysis) of 10-dimensional
embeddings. PCA is a non-parametric statistical technique
(George and Vidyapeetham, 2012) used for dimensionality
reduction in machine learning and the principal components
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FIGURE 3 | Confusion matrices for citizen scientists’ and the
machine-learning algorithm’s classifications.

are the coefficients of orthogonal linear combinations of the
variables in the dataset. Contours indicate the distributions
of the training dataset and the symbols represent the
testing dataset. The machine-learning algorithm achieved
only 76.2% accuracy in classifying earthquakes in the same
dataset, a score nearly 10% lower than citizen scientists
(Figure 4).

DISCUSSION

Seismograms are retired after having been classified by 10
different users on Zooniverse. Of 2467 seismograms, 2242
have received a conclusive label, meaning that the number

FIGURE 5 | Histograms for classifications made on seismograms without
conclusive label. The seismograms contained in this category have received
the same amount of classifications for at least two different categories with
less classifications for the other categories.

of classifications made for one category is not reached for
any other category as shown by a narrow distribution.
There was a larger level of agreement between volunteers

FIGURE 4 | The convolutional neural network for classifying the training dataset (contour maps) and the test dataset (symbols) from the December 5, 2018 Mw7.5
teleseimic earthquake. Shown in red are seismograms with an earthquake, seismograms without earthquakes are shown in blue.
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when the seismographs contained either earthquakes or
noise (Figure 2). Citizen scientists agree less on which
seismograms contain tremor and other signals as shown
by a wider distribution of classifications (Figure 5). We
assume that the degree of agreement of classifications
between citizen scientists reflects the collective confidence
of citizen scientists in identifying the seismic signals.
We found that earthquakes and noise have characteristic
waveforms and associated audio signals that make it
easy to distinguish them from other seismic signals.
Citizen scientists are directed to classify seismic signals

as not pertaining to any of the other categories when
the seismograms contain several different signals or have
unclear waveforms or audio signals. In these situations
the seismograms are often classified as an earthquake or
tremor. It is therefore unsurprising that the agreement
of classifications made on seismograms in the category
“none of the above” is lower than on seismograms in the
other categories.

The 225 seismograms which have not received a conclusive
label (Figure 5), meaning that the highest amount of
classifications has been reached for more than one category,

FIGURE 6 | Map of stations showing the location of recordings of triggered earthquake for different teleseismic earthquakes.
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amount to only 9% of all seismograms. Unsurprisingly, the
distribution of classifications made on these seismograms
shows no clear preference for any of the categories. However,
it stands out that classifications for tremor and “none of the
above” are more numerous than for earthquakes and noise,
reflecting that these seismic signals are more difficult to identify
and confirming the affirmations made for seismograms with
a conclusive label. This may bias citizen scientists (Hart et al.,
2009; Swanson et al., 2016) to classify seismograms with
“none of the above” events as earthquakes, tremor or noise.
These “none of the above” events reflect that seismograms
within the surface wave intervals may contain instrument
signals, and signals of anthropogenic and natural sources
(Smith and Tape, 2019).

The classifications made by citizen scientists of Zooniverse
make it possible to locate the stations with additional seismic
signals that occurred during the passage of surface waves
of teleseismic earthquakes in the AK network (Figures 6–
8). Surface waves from the earthquake on December 5, 2018
with Mw 7.5 southeast of the Loyalty Islands triggered local
earthquakes within 300 km north of Anchorage, (Figure 6).
During the passage of surface waves from the September 8, 2017
Mw 8.2 Mexico earthquake, tremor occurred in central Alaska
(Figure 7). The signals recorded during the passage of surface
waves from the September 28, 2018 Mw 7.5 Sulawesi earthquake
(Figure 8) show a random mix of classifications by citizen
scientists, implying that signals are present, but are ambiguous
in nature.

FIGURE 7 | Map of stations showing the locations of recordings of triggered tremor for different teleseismic earthquakes.
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The focus on this study has been on harnessing the
intelligence of citizen scientists to identify triggered seismic
events. In the subtask of detecting triggered earthquakes,
we compared the results of citizen scientists to an existing
machine-learning algorithm (Tang et al., 2020). The confusion
matrices in Figure 3 show that the machine-learning algorithm
misidentified 11 of the expert-labeled non-earthquake signals
as earthquake signals and missed 9 of the expert-labeled
earthquakes, while correctly labeling 47 earthquake and 17
non-earthquake signals. On the other hand, citizen scientists
correctly identified 43 earthquakes and missed 13 earthquake
signals, while correctly labeling 28 non-earthquake signals.

From the above results, both methods can successfully
identify triggered earthquakes, but citizen scientists can
detect non-earthquake signals better than the machine-
learning algorithm. Citizen scientists are more successful at
identifying non-earthquake signals because we encourage
them to classify seismograms without clear earthquake
signals as “none of above,” and the same standard used by
seismologists to label the data. However, the machine-learning
algorithm may identify triggered earthquakes hidden by
high background noise as positive examples (Figure 9).
Hence, the algorithm detects 11 more earthquake signals
than seismologists.

FIGURE 8 | Map of stations showing the locations of recordings where no triggered seismicity (noise) occurred for different teleseismic earthquakes.
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FIGURE 9 | Example seismogram with a triggered earthquake (red box) hidden in high background noise.

CONCLUSION

Over 2000 citizen scientists helped classify more than
2000 seismograms from 30 large worldwide earthquakes
with magnitudes over 7.5 in the citizen science project
“Earthquake Detective” on Zooniverse. Citizen scientists
generally agree more with each other when identifying (1)
seismograms with earthquake signals and (2) the absence
of distinct signals (noise) than when identifying tremor
or other signals. A subset of data we also classified by
experts (seismologists among the authors) and a machine-
learning algorithm trained to detect triggered earthquakes
(Tang et al., 2020). We compared these classifications
from a machine-learning algorithm, citizen scientists and
seismologists with each other and with the earthquake
classifications of citizen scientists. We found that citizen
scientists did not misidentify seismograms without an
earthquake (no false positives) but missed 13 earthquake
signals in seismograms (false negatives), while correctly
labeling 43 earthquake and 28 non-earthquake signals.
The machine-learning algorithm misidentified 11 non-
earthquake signals and failed to detect 9 earthquake signals
in seismograms, while correctly labeling 47 earthquake and
17 non-earthquake signals. Both the citizen scientists and
the machine-learning algorithm perform well in identifying
earthquakes, but the citizen scientists outperformed the
machine-learning algorithm in labeling non-earthquake
signals. Earthquake Detectives and a machine-learning
algorithm experience similar degrees of difficulties for
example in identifying other seismic signals, which are
more challenging and requires more intelligence than
identifying earthquakes, even though citizen scientists are
currently better at both.
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